The Universe Is Supernatural

Discussion in 'New Science' started by fudgetusk, Jun 27, 2016.

  1. Analis

    Analis Justified & Ancient

    Messages:
    1,392
    Likes Received:
    206
    Trophy Points:
    63
    But this is it what basic geometry relies upon. Theoretical, abstract mathematical entities, which, ironically, exist only in a pure logical way. Which leads to the old philosophical debate, are mathematical objects real, having an existence of their own in the objective world, or are they mere creations of the human brain ? The relevance of your arguments or of counter-arguments that could be opposed to them relies on the answer we give to this question. However, one thing can not be denied, that they do appear to describe the physical world with a great accuracy.

    No, this is not at all what Kantor said (and he definitely disapproved of your claim about straight lines) ! It doesn't work that way at all. Yes, he proposed – or more exactely, he unearthed that not all infinite sets could be put in a bijection as he initially believed, despite that some hugely counter-intuitive bijections could be drawn between sets that our mind would never at first sight believe to be equipotent (as mathematicians say, which means that they have the same cardinal). This is very important to understand : his «infinity of infinities» did not mean that infinite sets can include or be contained in other infinite sets, but that not all infinite sets are equipotent (mathematically, it means an infinity of infinite cardinals – and, in a more complex way, ordinals ; as is detailled in VSauce's video). So that it works in a very precise way, and it can't be used to assert everything (and definitely not that there additionnal straight lines between the first and second circles, as all lines are already contained in the first circle). *

    Nonetheless, those are notions that are routinely handled by mathematicians. ℕ, set of all whole (positive) numbers, has a beginnig and no end, while the set of negative numbers has no beginning but has an end. Also, take the following intervals of real numbers, all sets including an infinite amounts of elements : [0;1], it has a beginning and en end, ]0;1] has no beginning and an end ; [0;1[ has a beginning and no end ; ]0;1[ has no beginning and no end. As you noted, physicists also acknowledge the notion of a infinite universe, many astrophysical models postulate such an endless universe, both in space and time. Even a curved, closed space postulates that space is curved into something, a larger dimensional space, potentially infinite, exactely as the Earth with its two-dimensional surface is immersed in a three-dimensional space.


    * How does it work, exactely ? One can easily see that ℕ, the set of all whole numbers, can be put in a bijection with one of its parts, the set of all even numbers :
    0 ↔ 0
    1 ↔ 2
    2 ↔ 4
    3 ↔ 6
    4 ↔ 8
    5 ↔ 10
    6 ↔ 12
    7 ↔ 14
    and so on......

    Or as Galileo noted, with the set of perfect squares (squares of whole numbers)
    0 ↔ 0²= 0
    1 ↔ 1² = 1
    2 ↔ 2² = 4
    3 ↔ 3² = 9
    4 ↔ 4² = 16
    5 ↔ 5² = 25
    6 ↔ 6² = 36
    7 ↔ 7² = 49
    and so on......

    Of course, we can do the same thing with all powers of 2 (2⁰, 2¹, 2², 2³, 2⁴, 2⁵, 2⁶, etc...), and an infinity of other series. In fact, when you multiply the infinite by 2, 3, 4, or by any whole number n as big as it can be, or even by itself, or n times by itself, you still have the infinite, it is not even affected by the number of dimensions involved. ℕ × ℕ has the same cardinal than ℕ or ℕ × ℕ × ℕ.
    So, if we take א an infinite (also called transfinite) cardinal, we have :
    א =
    2 ×א=
    n × א =
    א×א ;
    However, א to its own power, also equal to n to the power of א,∀n > 1, is superior to א. It is in fact equal to P(א), cardinal of the set of all subsets of a given infinite set E, whose cardinal is א . So that a set, even if it is infinite, can not be put in a bijection to the set of all its parts. What Kantor found, is that there are what we may call classes of infinite sets, all of same cardinality, each following the class of sets of whom they are the sets of subsets, and preceding the class of sets of their subsets.

    So that we have אₒ, cardinal of ℕ (and all equipotent sets, rational numbers, computable numbers, finite texts of any size etc...) ; then cardinal of P(ℕ) and all equipotent sets (real numbers, complex numbers, points on a line or in a plane...), then cardinal of P(P(ℕ)) (sets of real numbers, functions, curves...), then cardinal of P(P(P(ℕ))) (sets of functions, topological transformations...), then cardinal of P(P(P(P(ℕ)))) and so on ad infinitum.
     
  2. INT21

    INT21 Justified & Ancient

    Messages:
    1,090
    Likes Received:
    640
    Trophy Points:
    113
    ..and so on ad infinitum...

    So basically you would agree that infinity is a valid concept ?

    ...However, one thing can not be denied, that they do appear to describe the physical world with a great accuracy...

    And thus the maths can accurately be described as a tool that describes reality. But does this translate to saying that maths is the reality ?

    Let us say I describe a colour as red. The colour would still be there even if there was no word for it.

    The problems occur when the maths outpaces the ability to verify itself through experiment.
    The progression, as we both know, is hypothesis, theory, experimental verification. Leads to new theory (or amended original, i.e back to the drawing board) based on the new result.

    ..Even a curved, closed space postulates that space is curved into something, a larger dimensional space, potentially infinite,..

    Quite so,

    This would seem to suggest that the Universe as we know it can't have come from absolutely nothing. Or it reenforces the argument for multiple universes.



    INT21
     
  3. MungomanII

    MungomanII Mostly harmless...

    Messages:
    1,768
    Likes Received:
    2,542
    Trophy Points:
    153
    It all sounds so theoretical to me...
     
  4. INT21

    INT21 Justified & Ancient

    Messages:
    1,090
    Likes Received:
    640
    Trophy Points:
    113
    Mungo'

    You're right; it is.

    But it sometimes keeps me awake at night.

    INT21
     
  5. MungomanII

    MungomanII Mostly harmless...

    Messages:
    1,768
    Likes Received:
    2,542
    Trophy Points:
    153
    I can understand it being capable of that INT21.

    There are so many possibilities that aren't really beyond the pale that enter my head, now that I'm closer to death than birth...even more so after occasionally experiencing the Fortean side of life.

    Life is a gift, I reckon, and a glorious one at that, and I reckon we have no idea at all of what is behind it all - One thing that I do know though is that mathematics figure predominantly.

    It's all so wondrous.
     
    skinny likes this.
  6. skinny

    skinny _.~~Blackstar~~._

    Messages:
    4,157
    Likes Received:
    3,006
    Trophy Points:
    153
    It is. I suspect the reason we struggle to formalise the evermore in scientific / theoretical terms is because our language just isn't capable of it. Other languages might have the capacity in representative terms.
    eg satori
    [​IMG]
    Mathematics might well be the best, if not the only symbolic system we have that can manage the task.
     
    MungomanII likes this.
  7. INT21

    INT21 Justified & Ancient

    Messages:
    1,090
    Likes Received:
    640
    Trophy Points:
    113
    ..Mathematics might well be the best, if not the only symbolic system we have that can manage the task...

    Or it might simply be a work creation scheme devised by physicists to keep them in work.

    Good scheme though.

    INT21
     
    MungomanII likes this.

Share This Page